A Framework for Large Scale Complex Adaptive Systems Modeling, Simulation, and Analysis
نویسنده
چکیده
Complex adaptive systems (CAS) exhibit properties beyond complex systems such as self-organization, adaptability and modularity. Designing models of CAS is typically a nontrivial task as many components are made up of subcomponents and rely on a large number of complex interactions. Studying features of these models also requires specific work for each system. Moreover, running these models as simulations with a large number of entities requires a large amount of processing power. We propose a framework that consists of a modeling language, analysis tools, and simulation engine, called CASTLE. We propose a language, Complex Adaptive Systems Language (CASL), which is designed for simple creation of CAS models while remaining domain agnostic. In particular, an extension to CASL, called CASL-SG, that introduces the concept of ‘semantic grouping’ allows for large scale simulations to execute on relatively modest hardware. A component of our framework, the observation module, aims to provide an extensible and expandable set of metrics to study key features of CAS such as aggregation, adaptability, and modularity, compatibility with existing analysis tools, while also allowing for more domain-specific techniques.
منابع مشابه
A Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کاملReliability analysis of repairable systems using system dynamics modeling and simulation
Repairable standby system’s study and analysis is an important topic in reliability. Analytical techniques become very complicated and unrealistic especially for modern complex systems. There have been attempts in the literature to evolve more realistic techniques using simulation approach for reliability analysis of systems. This paper proposes a hybrid approach called as Markov system ...
متن کاملDecentralized Model Reference Adaptive Control of Large Scale Interconnected Systems with Time-Delays in States and Inputs
This paper investigates the problem of decentralized model reference adaptive control (MRAC) for a class of large scale systems with time varying delays in interconnected terms and state and input delays. The upper bounds of the interconnection terms are considered to be unknown. Time varying delays in the nonlinear interconnection terms are bounded and nonnegative continuous functions and thei...
متن کاملA review of agent-based modeling (ABM) concepts and some of its main applications in management science
We live in a very complex world where we face complex phenomena such as social norms and new technologies. To deal with such phenomena, social scientists often use reductionism approach where they reduce them to some lower-lever variables and model the relationships among them through a scheme of equations. This approach that is called equation based modeling (EBM) has some basic weaknesses in ...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017